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Abstract 

An overview of liquid-vapor nucleation is given. As is 

demonstrated, a reasonably good qualitative understanding exists 

of nucleation and incipient boiling, but a general qdantitative 

description is still lacking. 

The result of thermodynamic equilibrium across curved 

liquid-vapor interfaces is presented. The extension of this to 

include the interaction with idealizations of surface cavities is 

made to demonstrate how superheat requirements for nucleation 

will be affected by surface roughness, flow velocity and buoy- 

ancy. A successful description of the nucleate boiling process 

must include a quantitative understanding of nucleation. 

Experimental measurements involving high liquid superheats 

and nucleation delay times are presented to show examples of 

homogeneous nucleation. Examples of nucleation and boiling on 

smooth glass substrates and on metal surfaces with various sur- 

face roughnesses are presented, with fluids including H20, Freon 

113, LN2 and LH2, at a/g = 1 and a/g = 0. 

An appropriate physical description or characterization of 

heating surfaces for nucleation purposes is still lacking. 

269 



Nucleation 

Classifications 

Pure Substance 

Mixtures 

Homogeneous 
(within bulk) 

Heterogeneous 
(on container walls) 

< 
Homogeneous 
(vapor phase out of solution) 

Heterogeneous 
(gas trapped in container 
walls) 

Empirical Categories -- Boiling Points 

Cryogenic 
“Norma 1” 
Liquid Metals 
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In an  at tempt  to incorporate the influence, on nucleation time, of 
system variables such as properties and microgeometry of the heated 
surface and convection effect,.., a "nucleation factor" ii introduced 
in the equations of the homogeneous nucleation theory, defined by 

F = ( A  heJA horn) (1)  

Ahat is the work required to activate a nucleation site in a heteroge- 
neous circumstance. T h e  variation in F then corresponds to a boiling 
inception temperature TIS ranging from Tssr to Thorn. 

For R liquid a t  a pressure P I  and a superheat tempernt.ure T, which 
produces n "normd" saturation pressure Pa (for a vnpor hubhle r = 
0 0 ) .  for thermodynamic equilibrium the critical sphericnl hublde size 
rr isgiven by 

. .  

20 - 1 +- p* 
P I  rc PI 
-- 

T h e  only nssumption in equation (2) is tha t  the system state is far 
enough from the thermodynamic critical state so tha t  uu >> ut .  A 
further prtduct of this assumption is that Pa = P,, the vapor pressure 
within the bubble. For nucleation to occur the bubble formed must 
exceed the critical bubble size given by equation (2) by a t  least one 
molecule. T h e  expression of Fisher [ 1 I J for the homogeneous nucle- 
ation rate of bubbles of critical size, neglecting the term for the free , 

energy of activation for the motion of an individual molecule of liquid 
past its neighbors into or away from the bubble surface, is given by 

J = "kTe-cAhnm/hT) (3) 
h 

where 

Nucleation will occur when a bubble of critical size forms per unit 
volume in a reasonable time, say T s. This T will be termed the nu- 
cleation time, and neglects the time required to  achieve a steady state 
of embryo distribution in any transient process. In equation (3) then, 
J a 1 / ~ ,  and for our present purposes the proportionality will be taken 
as an equality. For the heterogeneous nucleation case, replacin? Ahom 

in equation (3) by Abet of equation (1). with equations (2 ,4)  and the 
Clausius-Clapyron equation, and uu >> 01 the resulting expression 
relates the nucleation time T ,  the  nucleation factor F, and the su-  
perheated liquid temperature T 

( Pp23kT 1"d:y)1r2+ In - 1 ] } -  1 
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SPEAKER: HERMAN M ERTE. JR/UNIVERSITY OF MICHIGAN 

Robert Hendricks/Lewis Research Center: 

In your first set of slides, where you showed a rapid drop in pressure, that rapid 
drop of pressure is mimicked by the rapid drop in temperature when you did 
your boiling study. We have done quite a bit on that and found that the 
temperature beneath the growing bubble drops extraordinary rapidly and recovers 
in much the same way as the pressure does. 

Merte: 

Are you talking about the pipe venting problem? 

Hendri cks: 

Yes, that's right. 

Merte: 

The temperature will not drop until vapor is formed. 

Hendricks: 

Your temperature didn't drop; your pressure dropped. In our case when we did 
the nucleate boiling studies, our temperature dropped, but our pressure was 
cons tan t. 

Merte: 

The temperature dropped as soon as the vapor bubbles were formed. 

Hendricks: 

I see; you are in equilibrium. 

Merte: 

We had thermocouples inserted in the liquid too, and you could see that the 
vapor formed around the thermocouples eventually. The temperature did indeed 
drop, because once the bubbles are formed, of course, it is the consumption of 
the super heat by the growing vapor that drops the temperature of the liquid, 
which is, I think, what you are referring to. 

Hendricks: 

Right! When you got your sonic velocities from the experimentation, did you 
compare that with the equation of state, Martin-Powell, or something like that? 

Merte: 

Yes. 

Hetldricks: 

Was the comparison good? 
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Merte: 

Yes! Now, this is for the liquid state only; details of this comparison can be 
found in the cited reference. 

Hendricks: 

I thought that HSU’S criteria had dual roots for radii? 

Merte: 

I was looking at the more general problem. He dealt with the specific 
description of the transient temperature distribution in the boundary layer. He 
took a given thickness and then treated it as a semi-infinite solid where you 
ultimately had a step change in the surface temperature. Pete Griffith did work 
treating the boundary layer as a semi-infinite solid. Rosenhow and Furgel did 
some work with forced convection using a heat transfer coefficient to describe 
the temperature gradient at the surface. 

Hendricks: 

What was the reduced temperature and pressure of the Freon versus water when 
you did the transient heating? 

Merte: 

I don’t remember that. Do you mean relative to the critical state? 

Hendric ks: 

Yes, because they won’t compare unless they are on the same reduced 
temperature and pressure basis. 

Merte: 

We did it in terms of the homogeneous superheat; that is divided by the 
homogeneous superheat. 

Hendricks: 

I agree, but unless the thermodynamic states are corresponding states, they 
won’t agree. 

Merte: 

I don’t remember what they were. 

Hendricks: 

We generated a great deal of data with a ribbon heater and liquid hydrogen. I 
think that the data would probably fall in the center of your curve, but those 
were for ribbon heaters which may be a little different from the wires. I would 
like to suggest, for your Q versus Delta T plot, showing the effect of 
roughness; the initiation of nucleation is of the right order, but when you go up 
into the high fluxes, the functional relationship crosses back over again, because 
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you are probably blanketing the surface with vapor, which is equivalent to giving 
you a higher resistance. 

Merte: 

Obviously, there is going to be some point when we get to high enough heat 
fluxes where you get interference between the nucleating sites. 

Shigeo Nakanishi/Analex Corporation--Lewis Research Center: 

The heating rate appears to influence the level of super heat that the liquid can 
sustain before incipient boiling begins. Is that correct? 

Merte: 

Yes, that is correct. 

Nakanishi: 

In that event, since the available zero-g test time is very short, could all the 
results tend to be biased toward the high heating rate? If you could compare 
the very slow heating rate results with a sustained or long term zero-g case, 
you could possibly have a difference between the short-term and the long term 
zero-g tests? 

Merte: 

That was what moved the points on the curve. For example, with the Freon 
113, you noticed there was a line, and the data had covered the various points 
of the line because we varied the heating rate. I agree with what you are 
implying there; the nucleation point is indeed a function of more than just the 
surface temperature. It has got to be a function of the temperature distribution 
in the liquid boundary layer. That is why we are in the process of setting up to 
make some measurements of the temperature gradient which weren’t made 
previously. I think it is a combination of the temperature distribution in the 
liquid near the surface and the surface temperature together that govern when 
this nucleation takes place. 
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